论文标题

规范相关分析的排列推断

Permutation Inference for Canonical Correlation Analysis

论文作者

Winkler, Anderson M., Renaud, Olivier, Smith, Stephen M., Nichols, Thomas E.

论文摘要

规范相关分析(CCA)已成为人群神经成像的关键工具,从而可以研究许多成像和非成像测量之间的关联。由于其他变量通常是可变性的来源而不是直接关注的来源,因此以前的工作使用了从模型中删除这些效果的残留物上的CCA,然后直接进行排列推断。我们表明,如此简单的置换测试会导致错误率膨胀。原因是剩余化介绍了违反交换性假设的观察结果之间的依赖性。但是,即使没有滋扰变量,CCA的简单排列测试也会导致所有规范相关性以外的所有规范相关性的过高错误率。原因是一个简单的置换方案并不能忽略以前规范变量已经解释的变异性。在这里,我们针对这两个问题提出了解决方案:在滋扰变量的情况下,我们表明,将残差转换为较低的维度基础,在该基础上,交换性保持有效的排列测试;对于更一般的情况,有或没有滋扰变量,我们建议以逐步估算规范相关性,在每次迭代中删除方差已经解释,同时处理双方的不同数量变量。我们还讨论了如何解决测试的多样性,提出了不保守的可接受测试,并为CCA的置换推断提供了完整的算法。

Canonical correlation analysis (CCA) has become a key tool for population neuroimaging, allowing investigation of associations between many imaging and non-imaging measurements. As other variables are often a source of variability not of direct interest, previous work has used CCA on residuals from a model that removes these effects, then proceeded directly to permutation inference. We show that such a simple permutation test leads to inflated error rates. The reason is that residualisation introduces dependencies among the observations that violate the exchangeability assumption. Even in the absence of nuisance variables, however, a simple permutation test for CCA also leads to excess error rates for all canonical correlations other than the first. The reason is that a simple permutation scheme does not ignore the variability already explained by previous canonical variables. Here we propose solutions for both problems: in the case of nuisance variables, we show that transforming the residuals to a lower dimensional basis where exchangeability holds results in a valid permutation test; for more general cases, with or without nuisance variables, we propose estimating the canonical correlations in a stepwise manner, removing at each iteration the variance already explained, while dealing with different number of variables in both sides. We also discuss how to address the multiplicity of tests, proposing an admissible test that is not conservative, and provide a complete algorithm for permutation inference for CCA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源