论文标题
多重性的本地正常表格免费$ u(n)$ coadexhinexhight Orbits
Local normal forms for multiplicity free $U(n)$ actions on coadjoint orbits
论文作者
论文摘要
$ u(n+1)$ u(n)$的操作通过$ u(n)$的嵌入到$ u(n+1)$中是一个重要的多重示例示例。它们与代表理论中的Gelfand-Zeitlin完全可以整合的系统和无多重分支规则有关。本文以任意$ u(n+1)$ coadexhexhechaint Orbits在任意点上计算所有此类动作的Hamiltonian本地正常形式。使用交织模式的组合描述了结果;描述相关Kirwan多面体的小工具。
Actions of $U(n)$ on $U(n+1)$ coadjoint orbits via embeddings of $U(n)$ into $U(n+1)$ are an important family of examples of multiplicity free spaces. They are related to Gelfand-Zeitlin completely integrable systems and multiplicity free branching rules in representation theory. This paper computes the Hamiltonian local normal forms of all such actions, at arbitrary points, in arbitrary $U(n+1)$ coadjoint orbits. The results are described using combinatorics of interlacing patterns; gadgets that describe the associated Kirwan polytopes.