论文标题

TCP端点的模型预测充血控制

Model Predictive Congestion Control for TCP Endpoints

论文作者

Lynn, Taran, Ghosal, Dipak, Hanford, Nathan

论文摘要

科学网络和私人广域网络(WAN)中的一个常见问题是通过维持每个同时流的可预测数据传输,通过维持每个同时流的可预测数据传输。我们通过基于模型预测控制(MPC)的概念来开发控制算法来解决此问题,从而产生具有平稳起搏率和往返时间(RTTS)的流量。在提出的方法中,我们将瓶颈链接建模为队列,并得出与起搏速率和RTT相关的模型。基于此模型的基于MPC的控制算法避免了当前控制算法中存在的极端窗口(转化为速率)降低,而在面对网络拥塞时。我们已将算法作为Linux内核模块实现。通过仿真和实验分析,我们表明我们的算法达到了RTT和起搏速率低标准偏差的目标,即使瓶颈链接得到了充分利用。在多个流量的情况下,我们可以为每个流量分配不同的速率,只要速率的总和小于瓶颈速率,他们就可以保持其指定的起搏速率以低标准偏差。即使流量具有不同的RTT,也可以实现。

A common problem in science networks and private wide area networks (WANs) is that of achieving predictable data transfers of multiple concurrent flows by maintaining specific pacing rates for each. We address this problem by developing a control algorithm based on concepts from model predictive control (MPC) to produce flows with smooth pacing rates and round trip times (RTTs). In the proposed approach, we model the bottleneck link as a queue and derive a model relating the pacing rate and the RTT. A MPC based control algorithm based on this model is shown to avoid the extreme window (which translates to rate) reduction that exists in current control algorithms when facing network congestion. We have implemented our algorithm as a Linux kernel module. Through simulation and experimental analysis, we show that our algorithm achieves the goals of a low standard deviation of RTT and pacing rate, even when the bottleneck link is fully utilized. In the case of multiple flows, we can assign different rates to each flow and as long as the sum of rates is less than bottleneck rate, they can maintain their assigned pacing rate with low standard deviation. This is achieved even when the flows have different RTTs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源