论文标题

使用动态高斯混合物模型的岩石物理和地质引导的多物理倒置

Petrophysically and geologically guided multi-physics inversion using a dynamic Gaussian mixture model

论文作者

Astic, Thibaut, Heagy, Lindsey J., Oldenburg, Douglas W.

论文摘要

在上一篇论文中,我们引入了一个框架,用于进行岩石物理和地质指导的地球物理反演。在该框架中,岩石物理和地质信息是使用高斯混合模型(GMM)建模的。在反转中,GMM是地球物理模型的先验。该公式仅限于寻求单个物理特性模型的问题,并具有单个地球物理数据集。在本文中,我们将该框架扩展到依赖多个物理特性的多个地球物理数据集。岩石物理和地质信息被用来依靠独立物理学的地球物理调查。这需要在两个领域的进步。首先,有必要从单变量到对岩石物理数据的多变量分析的扩展,以及它们在反问题中的包含。其次,我们解决了从多个调查中倒反转数据的实际问题,并找到了一种可以接受的解决方案,以及岩石物理和地质信息。为了说明我们的方法的功效以及进行多物理倒置的优势,我们将合成重力和与金伯利矿床相关的磁性数据逆转。金伯利特管中包含两个不同的相嵌入在宿主岩石中的相。颠倒数据集会导致二元地质模型:背景或金伯利特。带有岩石物理信息的多物理倒置,可以区分管道的两个主要金伯利岩相。通过此示例,我们还强调了当可用的定量信息最少时,我们框架的功能可以与解释性地质假设合作。在这种情况下,高斯混合模型的动态更新使我们能够通过学习岩石物理模型来执行多物理反转。

In a previous paper, we introduced a framework for carrying out petrophysically and geologically guided geophysical inversions. In that framework, petrophysical and geological information is modelled with a Gaussian Mixture Model (GMM). In the inversion, the GMM serves as a prior for the geophysical model. The formulation was confined to problems in which a single physical property model was sought, with a single geophysical dataset. In this paper, we extend that framework to jointly invert multiple geophysical datasets that depend on multiple physical properties. The petrophysical and geological information is used to couple geophysical surveys that, otherwise, rely on independent physics. This requires advancements in two areas. First, an extension from a univariate to a multivariate analysis of the petrophysical data, and their inclusion within the inverse problem, is necessary. Second, we address the practical issues of simultaneously inverting data from multiple surveys and finding a solution that acceptably reproduces each one, along with the petrophysical and geological information. To illustrate the efficacy of our approach and the advantages of carrying out multi-physics inversions, we invert synthetic gravity and magnetic data associated with a kimberlite deposit. The kimberlite pipe contains two distinct facies embedded in a host rock. Inverting the datasets individually leads to a binary geological model: background or kimberlite. A multi-physics inversion, with petrophysical information, differentiates between the two main kimberlite facies of the pipe. Through this example, we also highlight the capabilities of our framework to work with interpretive geologic assumptions when minimal quantitative information is available. In those cases, the dynamic updates of the Gaussian Mixture Model allow us to perform multi-physics inversions by learning a petrophysical model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源