论文标题

随机潜在剩余视频预测

Stochastic Latent Residual Video Prediction

论文作者

Franceschi, Jean-Yves, Delasalles, Edouard, Chen, Mickaël, Lamprier, Sylvain, Gallinari, Patrick

论文摘要

设计说明未来固有不确定性的视频预测模型是具有挑战性的。文献中的大多数作品都是基于随机图像 - 自动回旋的复发网络,这引发了几个性能和适用性问题。一种替代方法是使用解开框架合成和时间动力学的完全潜在的时间模型。但是,由于设计和培训困难,文献中尚未在文献中提出过这种随机视频预测的模型。在本文中,我们通过引入一个新颖的随机时间模型来克服这些困难,该模型的动力学通过残留更新规则在潜在空间中控制。这种一阶方案是由微分方程的离散方案激励的。它自然地对视频动力学进行了建模,因为它允许我们更简单,更容易解释的潜在模型在挑战数据集上的先验最新方法胜过。

Designing video prediction models that account for the inherent uncertainty of the future is challenging. Most works in the literature are based on stochastic image-autoregressive recurrent networks, which raises several performance and applicability issues. An alternative is to use fully latent temporal models which untie frame synthesis and temporal dynamics. However, no such model for stochastic video prediction has been proposed in the literature yet, due to design and training difficulties. In this paper, we overcome these difficulties by introducing a novel stochastic temporal model whose dynamics are governed in a latent space by a residual update rule. This first-order scheme is motivated by discretization schemes of differential equations. It naturally models video dynamics as it allows our simpler, more interpretable, latent model to outperform prior state-of-the-art methods on challenging datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源