论文标题

车辆边缘计算的分布式任务复制:基于性能分析和学习算法

Distributed Task Replication for Vehicular Edge Computing: Performance Analysis and Learning-based Algorithm

论文作者

Sun, Yuxuan, Zhou, Sheng, Niu, Zhisheng

论文摘要

在车辆边缘计算(VEC)系统中,车辆可以共享其剩余计算资源以提供云计算服务。车辆网络的高度动态环境使得确保任务卸载延迟是一项挑战。为此,我们将任务复制介绍给VEC系统,在该系统中,任务的复制品同时将任务卸载到多个车辆上,并且在副本之间的第一个响应后完成了任务。首先,表征了任务复制品数量对卸载延迟的影响,并且最佳的任务副本数近似于封闭形式。基于分析结果,我们设计了一种基于学习的任务复制算法(LTRA),该算法(LTRA)具有组合多臂匪徒理论,该理论以分布式方式工作,并且可以自动适应VEC系统的动力学。现实的流量情况用于评估所提出算法的延迟性能。结果表明,在我们的仿真设置下,具有优化数量的任务复制品的LTRA可以将平均卸载延迟减少30%以上,而没有任务复制,同时可以将任务完成率从97%提高到99.6%。

In a vehicular edge computing (VEC) system, vehicles can share their surplus computation resources to provide cloud computing services. The highly dynamic environment of the vehicular network makes it challenging to guarantee the task offloading delay. To this end, we introduce task replication to the VEC system, where the replicas of a task are offloaded to multiple vehicles at the same time, and the task is completed upon the first response among replicas. First, the impact of the number of task replicas on the offloading delay is characterized, and the optimal number of task replicas is approximated in closed-form. Based on the analytical result, we design a learning-based task replication algorithm (LTRA) with combinatorial multi-armed bandit theory, which works in a distributed manner and can automatically adapt itself to the dynamics of the VEC system. A realistic traffic scenario is used to evaluate the delay performance of the proposed algorithm. Results show that, under our simulation settings, LTRA with an optimized number of task replicas can reduce the average offloading delay by over 30% compared to the benchmark without task replication, and at the same time can improve the task completion ratio from 97% to 99.6%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源