论文标题

学习设计用于车辆路由问题的启发式方法

Learn to Design the Heuristics for Vehicle Routing Problem

论文作者

Gao, Lei, Chen, Mingxiang, Chen, Qichang, Luo, Ganzhong, Zhu, Nuoyi, Liu, Zhixin

论文摘要

本文提出了一种学习本地搜索启发式方法的方法,该方法可以迭代地改善车辆路由问题(VRP)的解决方案。本地搜索启发式方法是由破坏候选解决方案的销毁操作员组成的,以及以下维修操作员,将破坏的人重建为新的。通过Actor-Critic框架训练的拟议的神经网络由图形注意力网络的修改版本的编码器组成,其中嵌入节点嵌入和边缘嵌入式集成在一起,而基于GRU的解码器构成了一对破坏和维修操作员。实验结果表明,在中等规模的数据集上,它既优于传统的启发式算法和对VRP的现有神经组合优化,并且能够应对大型数据集(例如,超过400个节点),这在该领域是一个相当大的挑战。此外,由于拟议的网络学会以更好的性能设计启发式方法,因此消除了对专业知识和手工启发式设计的需求。我们的实施可在线提供。

This paper presents an approach to learn the local-search heuristics that iteratively improves the solution of Vehicle Routing Problem (VRP). A local-search heuristics is composed of a destroy operator that destructs a candidate solution, and a following repair operator that rebuilds the destructed one into a new one. The proposed neural network, as trained through actor-critic framework, consists of an encoder in form of a modified version of Graph Attention Network where node embeddings and edge embeddings are integrated, and a GRU-based decoder rendering a pair of destroy and repair operators. Experiment results show that it outperforms both the traditional heuristics algorithms and the existing neural combinatorial optimization for VRP on medium-scale data set, and is able to tackle the large-scale data set (e.g., over 400 nodes) which is a considerable challenge in this area. Moreover, the need for expertise and handcrafted heuristics design is eliminated due to the fact that the proposed network learns to design the heuristics with a better performance. Our implementation is available online.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源