论文标题
来自冰冷卵石的原星盘气体中过量的C/H,越过Co Snowline
Excess C/H in Protoplanetary Disk Gas from Icy Pebble Drift across the CO Snowline
论文作者
论文摘要
巨型行星的大气组成带有其形成历史的信息。木星,土星和各种巨型系外行星的大气中可以看到超级巨星C/H比率。此外,巨型系外行星显示出广泛的C/O比。为了解释这些比率,一个假设是,当大量的冰鹅在CO雪地上漂移时,原始星团会吸收碳富含碳的气体。在这里,我们报告了磁盘气体中C/H比升高的第一个直接证据。我们使用两个热化学代码来建模$^{13} $ c $^{18} $ o,c $^{17} $ O,以及C $^{18} $ O(2-1)HD 163296磁盘的线光谱。我们表明,Co Snowline内部的气体($ \ sim $ 70 au)的C/小时比恒星值高1-2倍。该比率基本上超过了预期值,因为在这些半径处,只有25-60%的碳应在气体中。尽管我们不能排除70 au内正常c/h比的情况,但最可能的解决方案是C/H比的升高是比预期高的2-8倍。我们的模型还表明,70 AU以外的气体的C/h比为0.1 $ \ times $ the Stellar值。这张在内部区域富集的C/H气体的图片与外部区域的耗尽气体与冰卵石生长和原球磁盘漂移的数值模拟一致。我们的结果表明,冰冷卵石的大规模漂移可能发生在磁盘中,并且可能会大大改变行星形成的磁盘气体组成。
The atmospheric composition of giant planets carries the information of their formation history. Superstellar C/H ratios are seen in atmospheres of Jupiter, Saturn, and various giant exoplanets. Also, giant exoplanets show a wide range of C/O ratio. To explain these ratios, one hypothesis is that protoplanets accrete carbon-enriched gas when a large number of icy pebbles drift across the CO snowline. Here we report the first direct evidence of an elevated C/H ratio in disk gas. We use two thermo-chemical codes to model the $^{13}$C$^{18}$O, C$^{17}$O, and C$^{18}$O (2-1) line spectra of the HD 163296 disk. We show that the gas inside the CO snowline ($\sim$70 au) has a C/H ratio of 1-2 times higher than the stellar value. This ratio exceeds the expected value substantially, as only 25-60% of the carbon should be in gas at these radii. Although we cannot rule out the case of a normal C/H ratio inside 70 au, the most probable solution is an elevated C/H ratio of 2-8 times higher than the expectation. Our model also shows that the gas outside 70 au has a C/H ratio of 0.1$\times$ the stellar value. This picture of enriched C/H gas at the inner region and depleted gas at the outer region is consistent with numerical simulations of icy pebble growth and drift in protoplanetary disks. Our results demonstrate that the large-scale drift of icy pebble can occur in disks and may significantly change the disk gas composition for planet formation.