论文标题

基于知识的$ n $ - ary元组匹配

Knowledge-Based Matching of $n$-ary Tuples

论文作者

Monnin, Pierre, Couceiro, Miguel, Napoli, Amedeo, Coulet, Adrien

论文摘要

在扩展的语义网络中,人和软件代理可以访问越来越多的数据和知识来源。来源的粒度或完整性可能有所不同,因此是互补的。因此,应该对其进行调和,以解开其联合知识的全部潜力。特别是,应将单位匹配在跨源内和跨源,其相关性水平应分为等效,更具体或类似。该任务具有挑战性,因为知识单元可以在来源(例如,就词汇量)中异质表示。在本文中,我们专注于在知识库中与基于规则的方法相匹配。为了减轻异质性问题,我们依靠本体学表达的领域知识。我们通过从四个不同的现实世界来源中搜索50,435个N- ARY的分组之间的比对,对药物基因组学的生物医学领域进行了测试。结果突出了跨国和跨来源的值得注意的协议和特殊性。

An increasing number of data and knowledge sources are accessible by human and software agents in the expanding Semantic Web. Sources may differ in granularity or completeness, and thus be complementary. Consequently, they should be reconciled in order to unlock the full potential of their conjoint knowledge. In particular, units should be matched within and across sources, and their level of relatedness should be classified into equivalent, more specific, or similar. This task is challenging since knowledge units can be heterogeneously represented in sources (e.g., in terms of vocabularies). In this paper, we focus on matching n-ary tuples in a knowledge base with a rule-based methodology. To alleviate heterogeneity issues, we rely on domain knowledge expressed by ontologies. We tested our method on the biomedical domain of pharmacogenomics by searching alignments among 50,435 n-ary tuples from four different real-world sources. Results highlight noteworthy agreements and particularities within and across sources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源