论文标题
非脱位非线性扩散方程的长期渐近造型
Long-time asymptotics of non-degenerate non-linear diffusion equations
论文作者
论文摘要
我们研究了原型非线性扩散方程的长期渐近学。具体而言,我们考虑了问题的(非负)多项式的非分类扩散函数的情况。我们使用爱因斯坦的随机步行范式激励这些类型的方程式,从而导致以非发散形式的部分微分方程。另一方面,使用保护原则会以差异形式导致部分微分方程。得出转换以处理两种情况。然后,证明了最大原理(在一个无界和有界域上),以便获得在非线性扩散问题的解决方案的时间进化上方的边界。具体而言,这些界限基于线性问题的基本解决方案(所谓的Aronson的绿色函数)。因此,在线性问题的两个基本溶液之间将解决方案的长期渐近肌夹在了溶液中,我们证明,与退化扩散的情况不同,非分化扩散方程的溶液在长时间内会收敛到线性扩散溶液上。选择数值示例支持数学定理并说明收敛过程。我们的结果对如何解释潜在的异常扩散过程(例如在颗粒物材料流中)的渐近量表具有含义。
We study the long-time asymptotics of prototypical non-linear diffusion equations. Specifically, we consider the case of a non-degenerate diffusivity function that is a (non-negative) polynomial of the dependent variable of the problem. We motivate these types of equations using Einstein's random walk paradigm, leading to a partial differential equation in non-divergence form. On the other hand, using conservation principles leads to a partial differential equation in divergence form. A transformation is derived to handle both cases. Then, a maximum principle (on both an unbounded and a bounded domain) is proved, in order to obtain bounds above and below for the time-evolution of the solutions to the non-linear diffusion problem. Specifically, these bounds are based on the fundamental solution of the linear problem (the so-called Aronson's Green function). Having thus sandwiched the long-time asymptotics of solutions to the non-linear problems between two fundamental solutions of the linear problem, we prove that, unlike the case of degenerate diffusion, a non-degenerate diffusion equation's solution converges onto the linear diffusion solution at long times. Select numerical examples support the mathematical theorems and illustrate the convergence process. Our results have implications on how to interpret asymptotic scalings of potentially anomalous diffusion processes (such as in the flow of particulate materials) that have been discussed in the applied physics literature.