论文标题
通过增强学习的移动感测信息路径计划
Informative Path Planning for Mobile Sensing with Reinforcement Learning
论文作者
论文摘要
大规模的空间数据,例如空气质量,热条件和位置特征在各种应用中起着至关重要的作用。手动收集此类数据可能是乏味和劳动密集型的。随着机器人技术的发展,可以使用具有感应和导航功能的移动机器人自动执行此类任务是可行的。但是,由于电池寿命有限和充电站的稀缺性,重要的是要为机器人规划路径,以最大程度地提高数据收集的效用,也称为信息路径计划(IPP)问题。在本文中,我们使用增强学习(RL)提出了一种新型的IPP算法。受限的探索和开发策略旨在应对IPP的独特挑战,并且与经典的增强学习方法相比,它具有快速的收敛性和更好的最佳性。使用现实世界测量数据进行的广泛实验表明,在大多数测试用例中,所提出的算法优于最先进的算法。有趣的是,与现有的解决方案不同,必须重新执行任何输入参数时,我们的基于RL的解决方案允许在不同的问题实例上具有一定程度的可传输性。
Large-scale spatial data such as air quality, thermal conditions and location signatures play a vital role in a variety of applications. Collecting such data manually can be tedious and labour intensive. With the advancement of robotic technologies, it is feasible to automate such tasks using mobile robots with sensing and navigation capabilities. However, due to limited battery lifetime and scarcity of charging stations, it is important to plan paths for the robots that maximize the utility of data collection, also known as the informative path planning (IPP) problem. In this paper, we propose a novel IPP algorithm using reinforcement learning (RL). A constrained exploration and exploitation strategy is designed to address the unique challenges of IPP, and is shown to have fast convergence and better optimality than a classical reinforcement learning approach. Extensive experiments using real-world measurement data demonstrate that the proposed algorithm outperforms state-of-the-art algorithms in most test cases. Interestingly, unlike existing solutions that have to be re-executed when any input parameter changes, our RL-based solution allows a degree of transferability across different problem instances.