论文标题
使用高斯流程的安全关键系统的在线参数估计
Online Parameter Estimation for Safety-Critical Systems with Gaussian Processes
论文作者
论文摘要
参数估计对于复杂动力学系统的建模,跟踪和控制至关重要。但是,参数不确定性可能会损害依赖标称参数值的控制器下的系统性能。通常,使用数值回归方法构建为反问题来估算参数。但是,由于存在多个局部优点,对梯度的依赖,众多的实验数据或稳定性问题,它们遭受了非唯一性的困扰。在解决这些缺点时,我们提出了一个基于高斯流程(GPS)的贝叶斯优化框架,以进行在线参数估计。它在参数空间中使用响应表面上使用有效的搜索策略来查找具有最小功能评估的全局最佳功能。响应表面在嘈杂数据上使用GPS建模为相关的替代物。 GP后验预测差异用于智能自适应抽样。这可以平衡勘探与剥削权衡取舍,这是在预算有限的情况下达到全球Optima的关键。我们展示了我们在仿真中使用变化的参数的驱动的平面摆和安全至关重要的四面体的技术。我们还使用内部点方法和顺序二次程序对求解器进行基准测试。通过用新的优化参数迭代地重新配置控制器,我们可以大大改善系统的轨迹跟踪与名义情况和其他求解器。
Parameter estimation is crucial for modeling, tracking, and control of complex dynamical systems. However, parameter uncertainties can compromise system performance under a controller relying on nominal parameter values. Typically, parameters are estimated using numerical regression approaches framed as inverse problems. However, they suffer from non-uniqueness due to existence of multiple local optima, reliance on gradients, numerous experimental data, or stability issues. Addressing these drawbacks, we present a Bayesian optimization framework based on Gaussian processes (GPs) for online parameter estimation. It uses an efficient search strategy over a response surface in the parameter space for finding the global optima with minimal function evaluations. The response surface is modeled as correlated surrogates using GPs on noisy data. The GP posterior predictive variance is exploited for smart adaptive sampling. This balances the exploration versus exploitation trade-off which is key in reaching the global optima under limited budget. We demonstrate our technique on an actuated planar pendulum and safety-critical quadrotor in simulation with changing parameters. We also benchmark our results against solvers using interior point method and sequential quadratic program. By reconfiguring the controller with new optimized parameters iteratively, we drastically improve trajectory tracking of the system versus the nominal case and other solvers.