论文标题
通过张量类别的符号级别二元性
Symplectic level-rank duality via tensor categories
论文作者
论文摘要
我们为从Unity根源的量子组获得的编织融合类别提供了两个级别二元性的证明。第一个证明使用保形嵌入,而第二个则使用与Unity根部的量子组相关的编织融合类别的分类。此外,我们在奇怪的根基上为非单身编织融合类别类型量子组和$ c $的量子组给出了类似的结果。
We give two proofs of a level-rank duality for braided fusion categories obtained from quantum groups of type $C$ at roots of unity. The first proof uses conformal embeddings, while the second uses a classification of braided fusion categories associated with quantum groups of type $C$ at roots of unity. In addition we give a similar result for non-unitary braided fusion categories quantum groups of types $B$ and $C$ at odd roots of unity.