论文标题
Hodge数字的构造问题模拟积极特征的整数
The construction problem for Hodge numbers modulo an integer in positive characteristic
论文作者
论文摘要
让$ k $成为积极特征的代数封闭场。对于任何整数$ m \ geq 2 $,我们表明,光滑的投射$ k $ - 变化的杂物数可以使用值模元$ m $的任何组合,仅需serre duality。特别是,霍奇数量之间没有非平凡的多项式关系。
Let $k$ be an algebraically closed field of positive characteristic. For any integer $m \geq 2$, we show that the Hodge numbers of a smooth projective $k$-variety can take on any combination of values modulo $m$, subject only to Serre duality. In particular, there are no non-trivial polynomial relations between the Hodge numbers.