论文标题

使用脑形态数据的阿尔茨海默氏病的认知生物标志物优先级

Cognitive Biomarker Prioritization in Alzheimer's Disease using Brain Morphometric Data

论文作者

Peng, Bo, Yao, Xiaohui, Risacher, Shannon L., Saykin, Andrew J., Shen, Li, Ning, Xia

论文摘要

背景:认知评估是诊断阿尔茨海默氏病(AD)的最常见临床常规。鉴于大量的认知评估工具和时间限制的办公室访问,确定针对不同受试者的适当认知测试非常重要。大多数目前的研究为目标人群创建了认知测试选择指南,但并未针对每个受试者进行定制。在本手稿中,我们开发了一个机器学习范式,可以优先考虑个性化的认知评估。方法:我们调整了新开发的学习级方法PLTR来实施我们的范式。该方法了解了将最有效的认知评估推向优先级列表顶部的潜在评分函数。我们还扩展了PLTR,以更好地分开最有效的认知评估和较低的认知评估。结果:我们对ADNI数据的实证研究表明,所提出的范式在识别和优先考虑个人特定的认知生物标志物方面优于最先进的基准。我们在交叉验证和升级验证设置中进行实验。在这两种设置中,我们的范式在优先考虑认知特征方面,分别优于最佳基线,分别提高了22.1%和19.7%。结论:拟议的范式在优先考虑认知生物标志物方面取得了卓越的表现。优先考虑的认知生物标志物具有促进个性化诊断,疾病亚型以及最终在AD中精确医学的巨大潜力。

Background:Cognitive assessments represent the most common clinical routine for the diagnosis of Alzheimer's Disease (AD). Given a large number of cognitive assessment tools and time-limited office visits, it is important to determine a proper set of cognitive tests for different subjects. Most current studies create guidelines of cognitive test selection for a targeted population, but they are not customized for each individual subject. In this manuscript, we develop a machine learning paradigm enabling personalized cognitive assessments prioritization. Method: We adapt a newly developed learning-to-rank approach PLTR to implement our paradigm. This method learns the latent scoring function that pushes the most effective cognitive assessments onto the top of the prioritization list. We also extend PLTR to better separate the most effective cognitive assessments and the less effective ones. Results: Our empirical study on the ADNI data shows that the proposed paradigm outperforms the state-of-the-art baselines on identifying and prioritizing individual-specific cognitive biomarkers. We conduct experiments in cross validation and level-out validation settings. In the two settings, our paradigm significantly outperforms the best baselines with improvement as much as 22.1% and 19.7%, respectively, on prioritizing cognitive features. Conclusions: The proposed paradigm achieves superior performance on prioritizing cognitive biomarkers. The cognitive biomarkers prioritized on top have great potentials to facilitate personalized diagnosis, disease subtyping, and ultimately precision medicine in AD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源