论文标题

通过反事实优化图神经网络的无线电源控制

Wireless Power Control via Counterfactual Optimization of Graph Neural Networks

论文作者

Naderializadeh, Navid, Eisen, Mark, Ribeiro, Alejandro

论文摘要

我们考虑了无线网络中下行链路功率控制的问题,该问题由多个发射器收借托对组成,这些发射机对彼此在单个共享的无线介质中相互通信。为了减轻并发传输之间的干扰,我们利用网络拓扑来创建图形神经网络体系结构,然后我们使用一种无​​监督的原始双重反事实优化方法来学习最佳功率分配决策。我们展示了反事实优化技术如何使我们保证最低率约束,该限制适应网络大小,因此在整个网络配置范围内达到了平均平均值至$ 5^{th} $百分位数用户率。

We consider the problem of downlink power control in wireless networks, consisting of multiple transmitter-receiver pairs communicating with each other over a single shared wireless medium. To mitigate the interference among concurrent transmissions, we leverage the network topology to create a graph neural network architecture, and we then use an unsupervised primal-dual counterfactual optimization approach to learn optimal power allocation decisions. We show how the counterfactual optimization technique allows us to guarantee a minimum rate constraint, which adapts to the network size, hence achieving the right balance between average and $5^{th}$ percentile user rates throughout a range of network configurations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源