论文标题

与外平面图应用程序的分类和排名

Sorting and Ranking of Self-Delimiting Numbers with Applications to Outerplanar Graph Isomorphism

论文作者

Kammer, Frank, Meintrup, Johannes, Sajenko, Andrej

论文摘要

假设$ n $ bit序列$ s的$ s $ $ k $数字编码为Elias Gamma代码作为输入。我们提出了用于排序,密集排名和竞争性排名的空间算法,该算法在$ s $中,单词大小$ω(\ log n)$位。我们的算法以$ o(k + \ frac {n} {\ log n})$时间运行,并使用$ o(n)$ bits。排序算法以排序顺序返回给定数字,存储在$ n $位的比特矢量中,而我们的排名算法构建了数据结构,这些数据结构使我们随后能够在固定时间内返回$ s $中每个数字$ x $的密集/竞争等级。对于数字$ x \ in \ mathbb {n} $带有$ x> n $的$,我们需要$ x $的位置$ p_x $作为我们的密度 - /竞争量表数据结构的输入。作为上述算法的应用,我们给出了树皮同构算法,该算法以$ o(n)$时间运行,并在$ n $ node树上使用$ o(n)$ lits。最后,我们将树皮同构的结果推广到森林和外平面图,同时保持$ o(n)$位的空间用途。以前的最佳树木,森林和外平面图同构的最佳线性时间算法都使用$θ(n \ log n)$位。

Assume that an $N$-bit sequence $S$ of $k$ numbers encoded as Elias gamma codes is given as input. We present space-efficient algorithms for sorting, dense ranking and competitive ranking on $S$ in the word RAM model with word size $Ω(\log N)$ bits. Our algorithms run in $O(k + \frac{N}{\log N})$ time and use $O(N)$ bits. The sorting algorithm returns the given numbers in sorted order, stored within a bit-vector of $N$ bits, whereas our ranking algorithms construct data structures that allow us subsequently to return the dense/competitive rank of each number $x$ in $S$ in constant time. For numbers $x \in \mathbb{N}$ with $x > N$ we require the position $p_x$ of $x$ as the input for our dense-/competitive-rank data structure. As an application of our algorithms above we give an algorithm for tree isomorphism, which runs in $O(n)$ time and uses $O(n)$ bits on $n$-node trees. Finally, we generalize our result for tree isomorphism to forests and outerplanar graphs, while maintaining a space-usage of $O(n)$ bits. The previous best linear-time algorithms for trees, forests and outerplanar graph isomorphism all use $Θ(n \log n)$ bits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源