论文标题
低维自旋系统中磁化高原的增强
Enhancement of magnetization plateaus in low dimensional spin systems
论文作者
论文摘要
我们研究了旋转1/2 Heisenberg $ J_1-J_2 $锯齿和沮丧的链(也称为Zig-Zag Ladder)的低能特性,尤其是spin-1/2的磁化过程,并具有空间各向异性的$ g $ g $ -Factor。我们在分析和数字上处理问题,同时保持$ j_2/j_1 $比率通用。从数值上讲,我们使用完整和兰氏对角线以及无限的时间不断变化的块拆卸(ITEBD)方法。在分析上,我们采用(非)Abelian琼脂化。此外,对于锯齿链,我们还提供了平面带和局部元音的分析描述。通过考虑两种型号的$ G $ factor各向异性的特定模式,我们表明,小小的各向异性显着增强了半饱和度的磁化高原。对于沮丧的连锁店的磁化,我们表明了全部饱和高原的$ 1/3 $的破坏,有利于在半饱和的高原上创建高原。对于大型各向异性,可以在零磁化时存在额外的高原。在这里和较高的磁场,系统被锁定在半饱和平台中,从未达到完全饱和。
We study the low-energy properties and, in particular, the magnetization process of a spin-1/2 Heisenberg $J_1-J_2$ sawtooth and frustrated chain (also known as zig-zag ladder) with a spatially anisotropic $g$-factor. We treat the problem both analytically and numerically while keeping the $J_2/J_1$ ratio generic. Numerically, we use complete and Lanczos diagonalization as well as the infinite time-evolving block decimation (iTEBD) method. Analytically we employ (non-)Abelian bosonization. Additionally for the sawtooth chain, we provide an analytical description in terms of flat bands and localized magnons. By considering a specific pattern for the $g$-factor anisotropy for both models, we show that a small anisotropy significantly enhances a magnetization plateau at half saturation. For the magnetization of the frustrated chain, we show the destruction of the $1/3$ of the full saturation plateau in favor of the creation of a plateau at half-saturation. For large anisotropies, the existence of an additional plateau at zero magnetization is possible. Here and at higher magnetic fields, the system is locked in the half-saturation plateau, never reaching full saturation.