论文标题

关于完整杂物图的偏心能

On the eccentricity energy of complete mutipartite graph

论文作者

Tura, Fernando

论文摘要

图$ g $的偏心率(抗ADJACINCY)矩阵$ \ varepsilon(g)$是通过在每行和每一列中保留偏心率来从距离矩阵中获得的。 The $\varepsilon$-eigenvalues of a graph $G$ are those of its eccentricity matrix $\varepsilon(G),$ and the eccentricity energy (or the $\varepsilon$-energy) of $G$ is the sum of the absolute values of $\varepsilon$-eigenvalues.在本文中,我们为完整多明位图的$ \ varepsilon $ - 能源建立了一些界限,$ k_ {n_1,n_2,n_2,\ ldots,n_p} $ of order $ n = \ sum_ {i = 1}^p n_i $ and the Extreme the Extreme图。 这部分回答了Wang {\ em等人}(2019)中给出的问题。我们完成了纸张,显示的图形不是$ \ varepsilon $ -Cosectral,具有相同的$ \ varepsilon $ -Energy。

The eccentricity (anti-adjacency) matrix $\varepsilon(G)$ of a graph $G$ is obtained from the distance matrix by retaining the eccentricities in each row and each column. The $\varepsilon$-eigenvalues of a graph $G$ are those of its eccentricity matrix $\varepsilon(G),$ and the eccentricity energy (or the $\varepsilon$-energy) of $G$ is the sum of the absolute values of $\varepsilon$-eigenvalues. In this paper, we establish some bounds for the $\varepsilon$-energy of the complete multipartite graph $K_{n_1, n_2, \ldots,n_p}$ of order $n= \sum_{i=1}^p n_i $ and characterize the extreme graphs. This partially answers the problem given in Wang {\em et al.} (2019). We finish the paper showing graphs that are not $\varepsilon$-cospectral with the same $\varepsilon$-energy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源