论文标题
纤维定理àlamilnor,用于具有非分离奇点的可微分地图
Fibration theorems à la Milnor for differentiable maps with non-isolated singularities
论文作者
论文摘要
我们证明了Milnor的纤维定理,用于具有非孤立临界值的可区分真实图。我们研究了具有线性判别的地图的情况,并证明D-Regulacority的概念是在球体上存在Milnor纤维的关键点。我们还解释了如何通过同态形态修改目标空间以线性化的一般判别物。每当组成的映射为d-regular时,球上都有振动。沿本文讨论了很多例子。
We prove fibration theorems à la Milnor for differentiable real maps with non isolated critical values. We study the situation for maps with linear discriminant, and prove that the concept of d-regularity is the key point for the existence of a Milnor fibration on the sphere. We also explain how one can modify the target space by homeomorphisms to linearize a general discriminant. Whenever the composed map is d-regular one has fibration on the sphere. Plenty of examples are discussed along the text.