论文标题
中国共vid-19的人工智能预测
Artificial Intelligence Forecasting of Covid-19 in China
论文作者
论文摘要
背景替代了中国Covid-19的流行病学模型,我们提出了人工智能(AI)启发的方法,用于实时预测Covid-19,以估计中国共同-19的大小,长度和结束时间。我们开发了一种修改后的堆叠自动编码器,用于建模流行病的传输动力学。我们将该模型应用于实时预测中国的Covid-19案件。数据是从1月11日至2020年2月27日收集的。我们在自动编码器和聚类算法中使用了潜在变量来对省/城市进行分组以研究传输结构。结果,我们预测了累积性的曲线,确认了1220年1月20日至2020年4月20日中国的共同案例。使用多步预测,估计的6步,7步,8步,9步,9步和10步的预测的平均误差为1.64%,2.27%,2.27%,2.14%,2.14%,2.08%,0.73%,分别为0.73%。我们预测,进入预测传输动态曲线高原的省/城市的时间点变化了,范围从1月21日至2020年4月19日。34个省/城市分为9个集群。结论基于AI的方法预测Covid-19的轨迹的准确性很高。我们预测,Covid-19的流行病将于4月中旬结束。如果数据是可靠的,并且没有第二次传输,我们可以准确地预测中国各省/城市的Covid-19的传播动态。 AI启发的方法是帮助公共卫生计划和决策制定的强大工具。
BACKGROUND An alternative to epidemiological models for transmission dynamics of Covid-19 in China, we propose the artificial intelligence (AI)-inspired methods for real-time forecasting of Covid-19 to estimate the size, lengths and ending time of Covid-19 across China. METHODS We developed a modified stacked auto-encoder for modeling the transmission dynamics of the epidemics. We applied this model to real-time forecasting the confirmed cases of Covid-19 across China. The data were collected from January 11 to February 27, 2020 by WHO. We used the latent variables in the auto-encoder and clustering algorithms to group the provinces/cities for investigating the transmission structure. RESULTS We forecasted curves of cumulative confirmed cases of Covid-19 across China from Jan 20, 2020 to April 20, 2020. Using the multiple-step forecasting, the estimated average errors of 6-step, 7-step, 8-step, 9-step and 10-step forecasting were 1.64%, 2.27%, 2.14%, 2.08%, 0.73%, respectively. We predicted that the time points of the provinces/cities entering the plateau of the forecasted transmission dynamic curves varied, ranging from Jan 21 to April 19, 2020. The 34 provinces/cities were grouped into 9 clusters. CONCLUSIONS The accuracy of the AI-based methods for forecasting the trajectory of Covid-19 was high. We predicted that the epidemics of Covid-19 will be over by the middle of April. If the data are reliable and there are no second transmissions, we can accurately forecast the transmission dynamics of the Covid-19 across the provinces/cities in China. The AI-inspired methods are a powerful tool for helping public health planning and policymaking.