论文标题

多功能视频编码和超分辨率,可有效地交付8K视频,并具有4K向后兼容

Versatile video coding and super-resolution for efficient delivery of 8K video with 4K backward-compatibility

论文作者

Bonnineau, Charles, Hamidouche, Wassim, Travers, Jean-Francois, Deforges, Olivier

论文摘要

在本文中,我们通过一项客观研究提出,以比较和评估不同编码方法的性能,从而允许在广播网络上传递具有4K向后兼容的8K视频信号。提出的方法包括使用高效视频编码(HEVC)和多功能视频编码(VVC)标准编码的8K和4K单层信号的模拟广播,使用具有4K基础层(BL)和8K增强层(EL)的SHVC的空间可伸缩性,以及在4K VVC上应用4K VVC Signble Signal Desconduction descondodeds decdoddoddododdesdododdododdesdoddododdododedodeds desdododeDodeDecoddodeDecondossigalsial shvc的空间可伸缩性。为了提高量表,我们选择了基于深度学习的超分辨率方法,称为“超级分辨率”,带有反馈网络(SRFBN)和兰斯佐斯插值过滤器。我们表明,基于深度学习的方法比模拟广播可实现视觉质量的增长,尤其是在低于30Mb/s的比特率上,PSNR,SSIM和VMAF的平均增益分别为0.77dB,0.015和7.97,并且表现出的表现能够平均BD速率节省29%的BD量。

In this paper, we propose, through an objective study, to compare and evaluate the performance of different coding approaches allowing the delivery of an 8K video signal with 4K backward-compatibility on broadcast networks. Presented approaches include simulcast of 8K and 4K single-layer signals encoded using High-Efficiency Video Coding (HEVC) and Versatile Video Coding (VVC) standards, spatial scalability using SHVC with 4K base layer (BL) and 8K enhancement-layer (EL), and super-resolution applied on 4K VVC signal after decoding to reach 8K resolution. For up-scaling, we selected the deep-learning-based super-resolution method called Super-Resolution with Feedback Network (SRFBN) and the Lanczos interpolation filter. We show that the deep-learning-based approach achieves visual quality gain over simulcast, especially on bit-rates lower than 30Mb/s with average gain of 0.77dB, 0.015, and 7.97 for PSNR, SSIM, and VMAF, respectively and out-performs the Lanczos filter in average by 29% of BD-rate savings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源