论文标题
深度学习Cuzr原子电位的优化和验证:晶体和无定形阶段的鲁棒应用,其准确度接近DFT
Optimization and Validation of a Deep Learning CuZr Atomistic Potential: Robust Applications for Crystalline and Amorphous Phases with near-DFT Accuracy
论文作者
论文摘要
我们表明,基于密度功能理论(DFT)计算的深度学习神经网络电位(DP)可以很好地描述Cu-ZR材料,Cu-ZR材料是二元合金系统的一个示例,可以在几个有序的金属中和无形相中共存。 Cu-ZR的复杂相图使其成为传统原子场的具有挑战性的系统,无法很好地描述不同的特性和相位。取而代之的是,我们表明使用具有〜300K配置的大型数据库的DP方法通常与DFT相当。训练集还包括原始和散装基本金属的构型以及液体和实心阶段中的金属间构型,除了平板和无定形构型外。 DP模型通过比较诸如晶格常数,弹性常数,散装模量,声子光谱,表面能量与相同结构的DFT值等大体特性进行了验证。此外,我们将DP结果与使用良好建立的两个嵌入原子方法电位获得的值进行对比。总体而言,我们的DP电位为不同的CU-ZR阶段提供了接近DFT的精度,但其计算成本的一部分,因此可以准确地计算现实的原子模型,尤其是对于无定形阶段。
We show that a deep-learning neural network potential (DP) based on density functional theory (DFT) calculations can well describe Cu-Zr materials, an example of a binary alloy system that can coexist in several ordered intermetallics and as an amorphous phase. The complex phase diagram for Cu-Zr makes it a challenging system for traditional atomistic force-fields that fail to describe well the different properties and phases. Instead, we show that a DP approach using a large database with ~300k configurations can render results generally on par with DFT. The training set includes configurations of pristine and bulk elementary metals and intermetallics in the liquid and solid phases in addition to slab and amorphous configurations. The DP model was validated by comparing bulk properties such as lattice constants, elastic constants, bulk moduli, phonon spectra, surface energies to DFT values for identical structures. Further, we contrast the DP results with values obtained using well-established two embedded atom method potentials. Overall, our DP potential provides near DFT accuracy for the different Cu-Zr phases but with a fraction of its computational cost, thus enabling accurate computations of realistic atomistic models especially for the amorphous phase.