论文标题

贝叶斯空间同质性追求功能数据:美国收入分配的应用

Bayesian Spatial Homogeneity Pursuit of Functional Data: an Application to the U.S. Income Distribution

论文作者

Hu, Guanyu, Geng, Junxian, Xue, Yishu, Sang, Huiyan

论文摘要

收入分配描述了一个实体的总财富是如何在其人口中分配的。区域经济学研究人员感兴趣的问题是了解不同地区收入分配的空间同质性。在经济学中,洛伦兹曲线是收入分配的众所周知的功能表示。在本文中,我们提出了有限混合物(MFM)模型的混合物以及在空间功能数据分析的背景下,有限混合物(MRFC-MFM)模型的马尔可夫随机场约束混合物,以捕获洛伦兹曲线的空间同质性。我们设计有效的马尔可夫链蒙特卡洛(MCMC)算法,以同时推断簇数的后验分布和空间功能数据的聚类配置。进行了广泛的仿真研究,以显示与现有方法相比,提出的方法的有效性。我们将提出的空间功能聚类方法应用于美国社区调查公共使用微型数据(PUMS)数据的状态收入Lorenz曲线。结果揭示了我们整个我们各地的州级收入分配的许多重要集群模式。

An income distribution describes how an entity's total wealth is distributed amongst its population. A problem of interest to regional economics researchers is to understand the spatial homogeneity of income distributions among different regions. In economics, the Lorenz curve is a well-known functional representation of income distribution. In this article, we propose a mixture of finite mixtures (MFM) model as well as a Markov random field constrained mixture of finite mixtures (MRFC-MFM) model in the context of spatial functional data analysis to capture spatial homogeneity of Lorenz curves. We design efficient Markov chain Monte Carlo (MCMC) algorithms to simultaneously infer the posterior distributions of the number of clusters and the clustering configuration of spatial functional data. Extensive simulation studies are carried out to show the effectiveness of the proposed methods compared with existing methods. We apply the proposed spatial functional clustering method to state level income Lorenz curves from the American Community Survey Public Use Microdata Sample (PUMS) data. The results reveal a number of important clustering patterns of state-level income distributions across US.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源