论文标题

最近邻居规则的核心

Coresets for the Nearest-Neighbor Rule

论文作者

Flores-Velazco, Alejandro, Mount, David M.

论文摘要

鉴于训练集的标签点$ p $,最近的邻居规则将预测未标记的查询点的类别是该集合中最接近点的标签。为了提高分类的时间和空间复杂性,一个自然的问题是如何减少训练集,而不会显着影响最近的邻居规则的准确性。最近的邻居凝结与查找子集$ r \ subseteq p $交易,以便在p $中的每个点$ p \,$ p $ in $ r $ in $ r $的近邻居处的标签与$ p $相同。这与核心的概念有关,核心的概念可以将其广泛定义为集合的子集,因此核心上的确切结果对应于原始集合的近似结果。但是,核心的保证符合任何查询点,而不仅仅是训练集的点。 本文介绍了最近邻居分类的核心概念。我们扩展了用于凝结的现有标准,并证明使用这些子集时正确对任何查询点进行分类。此外,我们证明,找到此类最小基数的子集是NP-固定的,并提出了具有可在其选定子集大小的可证明的上限的二次时近似算法。此外,我们展示了如何改进这些算法之一,以具有次级运行时,这是这种凝结的第一个。

Given a training set $P$ of labeled points, the nearest-neighbor rule predicts the class of an unlabeled query point as the label of its closest point in the set. To improve the time and space complexity of classification, a natural question is how to reduce the training set without significantly affecting the accuracy of the nearest-neighbor rule. Nearest-neighbor condensation deals with finding a subset $R \subseteq P$ such that for every point $p \in P$, $p$'s nearest-neighbor in $R$ has the same label as $p$. This relates to the concept of coresets, which can be broadly defined as subsets of the set, such that an exact result on the coreset corresponds to an approximate result on the original set. However, the guarantees of a coreset hold for any query point, and not only for the points of the training set. This paper introduces the concept of coresets for nearest-neighbor classification. We extend existing criteria used for condensation, and prove sufficient conditions to correctly classify any query point when using these subsets. Additionally, we prove that finding such subsets of minimum cardinality is NP-hard, and propose quadratic-time approximation algorithms with provable upper-bounds on the size of their selected subsets. Moreover, we show how to improve one of these algorithms to have subquadratic runtime, being the first of this kind for condensation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源