论文标题

数据驱动的集体变量用于增强采样

Data-Driven Collective Variables for Enhanced Sampling

论文作者

Bonati, Luigi, Rizzi, Valerio, Parrinello, Michele

论文摘要

设计一组合适的集体变量对于几种增强的采样方法的成功至关重要。在这里,我们关注如何从限制到亚稳态状态的信息中获取此类变量。我们通过大量的描述符来表征这些状态,并采用神经网络在较低维空间中压缩这些信息,使用Fisher的线性判别剂作为目标函数,以最大程度地发挥网络的判别能力。我们使用原子距离组成的非线性可分离数据集对丙氨酸二肽进行测试。然后,我们研究以协同机制为特征的分子间藻反应。所得的变量能够通过在连接亚稳态盆地波动的物理空间中绘制非线性路径来促进采样。最后,我们通过研究其与物理变量的关系来解释神经网络的行为。通过识别其最相关的特征,我们能够对该过程获得化学见解。

Designing an appropriate set of collective variables is crucial to the success of several enhanced sampling methods. Here we focus on how to obtain such variables from information limited to the metastable states. We characterize these states by a large set of descriptors and employ neural networks to compress this information in a lower-dimensional space, using Fisher's linear discriminant as an objective function to maximize the discriminative power of the network. We test this method on alanine dipeptide, using the non-linearly separable dataset composed by atomic distances. We then study an intermolecular aldol reaction characterized by a concerted mechanism. The resulting variables are able to promote sampling by drawing non-linear paths in the physical space connecting the fluctuations between metastable basins. Lastly, we interpret the behavior of the neural network by studying its relation to the physical variables. Through the identification of its most relevant features, we are able to gain chemical insight into the process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源