论文标题
面部识别:太偏见了,还是不偏见?
Face Recognition: Too Bias, or Not Too Bias?
论文作者
论文摘要
我们揭示了对最先进的面部识别(FR)系统中偏见问题的关键见解,该系统使用野生(BFW)数据集中的新型面孔:对于性别和种族群体平衡的数据。我们显示了跨不同子组的面对对对的最佳得分阈值的变化。因此,学习所有对的全局阈值的常规方法,导致子组之间的性能差距。通过学习特定于亚组的阈值,我们不仅减轻了性能差距中的问题,而且还表现出显着的增强性能。此外,我们进行人类评估以衡量人类的偏见,这支持了这样一种假设,即这种偏见存在于人类的感知中。对于BFW数据库,源代码等等,请访问github.com/visionjo/facerec-bias-bfw。
We reveal critical insights into problems of bias in state-of-the-art facial recognition (FR) systems using a novel Balanced Faces In the Wild (BFW) dataset: data balanced for gender and ethnic groups. We show variations in the optimal scoring threshold for face-pairs across different subgroups. Thus, the conventional approach of learning a global threshold for all pairs resulting in performance gaps among subgroups. By learning subgroup-specific thresholds, we not only mitigate problems in performance gaps but also show a notable boost in the overall performance. Furthermore, we do a human evaluation to measure the bias in humans, which supports the hypothesis that such a bias exists in human perception. For the BFW database, source code, and more, visit github.com/visionjo/facerec-bias-bfw.