论文标题
Panoptic特征融合网:生物医学和生物学图像的新实例分割范例
Panoptic Feature Fusion Net: A Novel Instance Segmentation Paradigm for Biomedical and Biological Images
论文作者
论文摘要
实例分割是生物医学和生物图像分析的重要任务。由于背景组件复杂,对象外观的高变异性,许多重叠的对象和模棱两可的对象边界,此任务仍然具有挑战性。最近,基于深度学习的方法已被广泛用于解决这些问题,并可以归类为基于建议和基于建议的方法。但是,无需提案和基于建议的方法均遭受信息丢失,因为它们专注于全球层面的语义或本地级实例功能。为了解决此问题,我们提出了一个全景特征融合网(PFFNET),该融合网统一了这项工作中的语义和实例特征。具体而言,我们提出的PFFNET包含一个残留的注意功能融合机制,将实例预测与语义特征结合在一起,以促进实例分支中的语义上下文信息学习。然后,蒙版质量子分支旨在使每个对象的置信度得分与掩码预测的质量保持一致。此外,在语义分支和实例分支中的语义分割任务之间设计了一种一致性正则化机制,以促进这两个任务的强大学习。广泛的实验证明了我们提出的PFFNET的有效性,该实验在各种生物医学和生物数据集上的最先进方法优于几种最先进的方法。
Instance segmentation is an important task for biomedical and biological image analysis. Due to the complicated background components, the high variability of object appearances, numerous overlapping objects, and ambiguous object boundaries, this task still remains challenging. Recently, deep learning based methods have been widely employed to solve these problems and can be categorized into proposal-free and proposal-based methods. However, both proposal-free and proposal-based methods suffer from information loss, as they focus on either global-level semantic or local-level instance features. To tackle this issue, we present a Panoptic Feature Fusion Net (PFFNet) that unifies the semantic and instance features in this work. Specifically, our proposed PFFNet contains a residual attention feature fusion mechanism to incorporate the instance prediction with the semantic features, in order to facilitate the semantic contextual information learning in the instance branch. Then, a mask quality sub-branch is designed to align the confidence score of each object with the quality of the mask prediction. Furthermore, a consistency regularization mechanism is designed between the semantic segmentation tasks in the semantic and instance branches, for the robust learning of both tasks. Extensive experiments demonstrate the effectiveness of our proposed PFFNet, which outperforms several state-of-the-art methods on various biomedical and biological datasets.