论文标题
4D时空fMRI数据的混合3DCNN和基于3DC-LSTM的模型:持久自闭症分类研究
A Hybrid 3DCNN and 3DC-LSTM based model for 4D Spatio-temporal fMRI data: An ABIDE Autism Classification study
论文作者
论文摘要
功能磁共振成像(fMRI)捕获了神经活动的时间动力学,这是大脑空间位置的函数。因此,fMRI扫描表示为4维(3空间 + 1次)张量。人们普遍认为,fMRI中的时空模式表现为行为和临床症状。由于fMRI的高维度($ \ sim $ 100万美元),并且数据集有限的基础性的额外约束,因此提取此类模式具有挑战性。克服这些障碍的一种标准方法是通过汇总随着时间的流逝激活或空间来降低数据的维度,而牺牲可能丢失有用信息。在这里,我们引入了一种端到端算法,能够使用3-D CNN和3-D卷积LSTM从完整的4-D数据中提取时空特征。我们在公开可用的遵守数据集上评估了我们提出的模型,以证明我们模型从静止状态fMRI数据中对自闭症谱系障碍(ASD)进行分类的能力。我们的结果表明,所提出的模型在纽约大学和UM站点分别在单个位点上实现了最新的结果状态。
Functional Magnetic Resonance Imaging (fMRI) captures the temporal dynamics of neural activity as a function of spatial location in the brain. Thus, fMRI scans are represented as 4-Dimensional (3-space + 1-time) tensors. And it is widely believed that the spatio-temporal patterns in fMRI manifests as behaviour and clinical symptoms. Because of the high dimensionality ($\sim$ 1 Million) of fMRI, and the added constraints of limited cardinality of data sets, extracting such patterns are challenging. A standard approach to overcome these hurdles is to reduce the dimensionality of the data by either summarizing activation over time or space at the expense of possible loss of useful information. Here, we introduce an end-to-end algorithm capable of extracting spatiotemporal features from the full 4-D data using 3-D CNNs and 3-D Convolutional LSTMs. We evaluate our proposed model on the publicly available ABIDE dataset to demonstrate the capability of our model to classify Autism Spectrum Disorder (ASD) from resting-state fMRI data. Our results show that the proposed model achieves state of the art results on single sites with F1-scores of 0.78 and 0.7 on NYU and UM sites, respectively.