论文标题
物联网的最佳定价:一种机器学习方法
Optimal Pricing of Internet of Things: A Machine Learning Approach
论文作者
论文摘要
物联网(IoT)从嵌入传感器的设备中产生大量数据。物联网数据允许使用机器学习创建有利可图的服务。但是,以前的研究并未解决基于机器学习的物联网服务的最佳定价和捆绑的问题。在本文中,我们从机器学习的角度定义了数据值和服务质量。我们提出了一个物联网市场模型,该模型由向服务提供商出售数据的数据供应商以及为客户提供物联网服务的服务提供商。然后,我们为独立和捆绑的物联网服务介绍了最佳定价方案。在独立服务销售中,服务提供商优化了购买的数据和服务订阅费的规模,以最大化其利润。对于服务捆绑包,订阅费和分组物联网服务的数据大小已进行优化,以最大程度地提高合作服务提供商的总利润。我们表明,与独立销售相比,捆绑物联网服务可以最大化服务提供商的利润。为了获得捆绑服务的利润分配,我们将合作游戏理论中的核心和沙普利解决方案的概念应用于捆绑联盟的合作服务提供商之间的有效且公平的收益分配。
Internet of things (IoT) produces massive data from devices embedded with sensors. The IoT data allows creating profitable services using machine learning. However, previous research does not address the problem of optimal pricing and bundling of machine learning-based IoT services. In this paper, we define the data value and service quality from a machine learning perspective. We present an IoT market model which consists of data vendors selling data to service providers, and service providers offering IoT services to customers. Then, we introduce optimal pricing schemes for the standalone and bundled selling of IoT services. In standalone service sales, the service provider optimizes the size of bought data and service subscription fee to maximize its profit. For service bundles, the subscription fee and data sizes of the grouped IoT services are optimized to maximize the total profit of cooperative service providers. We show that bundling IoT services maximizes the profit of service providers compared to the standalone selling. For profit sharing of bundled services, we apply the concepts of core and Shapley solutions from cooperative game theory as efficient and fair allocations of payoffs among the cooperative service providers in the bundling coalition.