论文标题
量子Lifshitz理论中的对数负面影响
Logarithmic Negativity in Quantum Lifshitz Theories
论文作者
论文摘要
我们通过计算一个和两个空间维度中量子Lifshitz模型中一类混合状态的对数负面影响,研究了非相关关键系统中的量子纠缠。在1+1个维度中,我们采用了一种相关方法来获得开放和周期性的双旋转链的分析结果。在2+1个维度中,我们使用复制方法,并考虑球形和环形空间歧管。在所有情况下,对数的负效率的普遍有限部分消失了在两个不相交组成部分上定义的混合状态。对于在相邻组件上定义的混合状态,我们发现一种非平凡的对数负面性让人联想到二维形式的野外理论。作为我们计算的副产品,我们在2+1维中获得了奇数纠缠熵的确切结果。
We investigate quantum entanglement in a non-relativistic critical system by calculating the logarithmic negativity of a class of mixed states in the quantum Lifshitz model in one and two spatial dimensions. In 1+1 dimensions we employ a correlator approach to obtain analytic results for both open and periodic biharmonic chains. In 2+1 dimensions we use a replica method and consider spherical and toroidal spatial manifolds. In all cases, the universal finite part of the logarithmic negativity vanishes for mixed states defined on two disjoint components. For mixed states defined on adjacent components, we find a non-trivial logarithmic negativity reminiscent of two-dimensional conformal field theories. As a byproduct of our calculations, we obtain exact results for the odd entanglement entropy in 2+1 dimensions.