论文标题

不可用的纯净状态

A non-diagonalizable pure state

论文作者

Koszmider, Piotr

论文摘要

我们在$ \ ell_2 $上的所有有界线性运算符的c*-algebra $ \ Mathcal b(\ ell_2)$上构建纯状态,该$ \ ell_2 $不可对数,即,它不是$ \ lim_u \ lim_u \ langle \ langle t(e_k \ e_k \ rangle $ y__________________________________) \ Mathbb n} $ \ ell_2 $和$ \ mathbb n $上的Ultrafilter $ u $。这构成了安德森(Anderson)的猜想的反例,而没有其他假设,并改善了C. Akemann,N。Weaver,I。Farah和I. Smythe的结果。 这是从J. Anderson的结果以及对Kadison-Singer问题的积极解决方案来看,D。Spielman,D。Spielman,N。Srivastava,我们纯净的状态限制对任何具有对角线运营商的原子MASA $ d((E_K)_ {K \ in \ MATHBB N})的限制,以对数的$ ___________________________________________________________________ n} $在$ d((e_k)_ {k \ in \ mathbb n})$上不是乘法。

We construct a pure state on the C*-algebra $\mathcal B(\ell_2)$ of all bounded linear operators on $\ell_2$ which is not diagonalizable, i.e., it is not of the form $\lim_u\langle T(e_k), e_k\rangle$ for any orthonormal basis $(e_k)_{k\in \mathbb N}$ of $\ell_2$ and an ultrafilter $u$ on $\mathbb N$. This constitutes a counterexample to Anderson's conjecture without additional hypothesis and improves results of C. Akemann, N. Weaver, I. Farah and I. Smythe who constructed such states making additional set-theoretic assumptions. It follows from results of J. Anderson and the positive solution to the Kadison-Singer problem due to A. Marcus, D. Spielman, N. Srivastava that the restriction of our pure state to any atomic masa $D((e_k)_{k\in \mathbb N})$ of diagonal operators with respect to an orthonormal basis $(e_k)_{k\in \mathbb N}$ is not multiplicative on $D((e_k)_{k\in \mathbb N})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源