论文标题

随机点措施的运输不平等

Transport inequalities for random point measures

论文作者

Gozlan, Nathael, Herry, Ronan, Peccati, Giovanni

论文摘要

我们得出了混合二项点过程和泊松点过程的转运 - 凝集不平等。我们表明,当有限的强度措施满足Talagrand运输不平等时,该积分过程的定律也满足了Talagrand类型的运输不平等。我们还表明,泊松点过程(具有任意$σ$ -Finite强度度量)始终满足通用的运输 - 内向不平等。我们探讨了这些不平等的后果,从度量的浓度和修改的对数Sobolev不平等方面探讨了这些不平等。特别是,我们的结果使人们可以扩大Reitzner [31]的偏差不平等,最初证明是有限质量的泊松随机度量。

We derive transport-entropy inequalities for mixed binomial point processes, and for Poisson point processes. We show that when the finite intensity measure satisfies a Talagrand transport inequality, the law of the point process also satisfies a Talagrand type transport inequality. We also show that a Poisson point process (with arbitrary $σ$-finite intensity measure) always satisfies a universal transport-entropy inequality à la Marton. We explore the consequences of these inequalities in terms of concentration of measure and modified logarithmic Sobolev inequalities. In particular, our results allow one to extend a deviation inequality by Reitzner [31], originally proved for Poisson random measures with finite mass.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源