论文标题
Aschenbach旋转颗粒的效果
Aschenbach effect for spinning particles in Kerr spacetime
论文作者
论文摘要
如果旋转的赤道大地测量学的轨道速度曲线在Kerr Black Hole的赤道平面上具有非单调的径向行为,前提是黑洞的自旋参数$ a $ A $大于某个临界值$ a_c \ a_c \ a_c \ a_c \ of 0.9953 m $。在这里,相对于局部非旋转框架(LNRF)测量了轨道速度,而非单调行为(称为Aschenbach效应)仅用于共旋转轨道。使用Mathisson-PapaPetrou-Dixon方程进行巨大的旋转粒子,我们研究了带有自旋的测试粒子的Aschenbach效应。除了黑孔自旋外,粒子自旋及其方向的绝对值(并行或反平行于黑洞自旋)对于Aschenbach效应也起着重要作用。我们确定Kerr Black Hole的自旋参数的临界值$ A_C $,其中Aschenbach效应作为探针旋转的函数所设置的临界值。我们不仅考虑黑洞($ a^2 \ le m^2 $),还考虑赤裸裸的奇异点($ a^2> m^2 $)。尽管对于无旋(地球)颗粒,轨道速度总是单调的,如果运动是反旋转的,我们发现,对于围绕裸奇异的旋转旋转旋转的反旋转运动中的旋转颗粒,轨道旋转的轨道速度在某个半径间隔内增加。
The orbital velocity profile of circular timelike geodesics in the equatorial plane of a Kerr black hole has a non-monotonic radial behavior, provided that the spin parameter $a$ of the black hole is bigger than a certain critical value $a_c \approx 0.9953 M$. Here the orbital velocity is measured with respect to the Locally Non-Rotating Frame (LNRF), and the non-monotonic behavior, which is known as the Aschenbach effect, occurs only for co-rotating orbits. Using the Mathisson-Papapetrou-Dixon equations for a massive spinning particle, we investigate the Aschenbach effect for test particles with spin. In addition to the black-hole spin, the absolute value of the particle's spin and its orientation (parallel or anti-parallel to the black-hole spin) also play an important role for the Aschenbach effect. We determine the critical value $a_c$ of the spin parameter of the Kerr black hole where the Aschenbach effect sets in as a function of the spin of the probe. We consider not only black holes ($a^2 \le M^2$) but also naked singularities ($a^2>M^2$). Whereas for spinless (geodesic) particles the orbital velocity is always monotonically decreasing if the motion is counter-rotating, we find that for spinning particles in counter-rotating motion with anti-parallel spin around a naked singularity the orbital velocity is increasing on a certain radius interval.