论文标题

归一化套装理论的Yang-baxter同源性的几何实现

The geometric realization of a normalized set-theoretic Yang-Baxter homology of biquandles

论文作者

Wang, Xiao, Yang, Seung Yeop

论文摘要

Biracks和Biquandles对于研究结理论很有用,是固定理论Yang-baxter方程的特殊系列。 Carter,Elhamdadi和Saito开发了一种针对Bettoic Yang-Baxter方程的同源理论,以构建结的不变性。在本文中,我们构建了Yang-Baxter方程的固定理论解的归一化(CO)同源理论。我们获得了亚历山大·比克德尔斯(Alexander Biquandles)的非平凡$ n $ cocycles的一些具体例子。对于Biquandle $ X,讨论了其几何实现$ BX $,这有可能建立链接和打结的表面的不变性。特别是,我们证明,如果Biquandle $ x $有限,则将第二个同型组$ BX $有限生成。

Biracks and biquandles, which are useful for studying the knot theory, are special families of solutions of the set-theoretic Yang-Baxter equation. A homology theory for the set-theoretic Yang-Baxter equation was developed by Carter, Elhamdadi, and Saito in order to construct knot invariants. In this paper, we construct a normalized (co)homology theory of a set-theoretic solution of the Yang-Baxter equation. We obtain some concrete examples of non-trivial $n$-cocycles for Alexander biquandles. For a biquandle $X,$ its geometric realization $BX$ is discussed, which has the potential to build invariants of links and knotted surfaces. In particular, we demonstrate that the second homotopy group of $BX$ is finitely generated if the biquandle $X$ is finite.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源