论文标题
绝对泊松比和晶体二维膜的弯曲刚度指数
Absolute Poisson's ratio and the bending rigidity exponent of a crystalline two-dimensional membrane
论文作者
论文摘要
我们计算了绝对的泊松比$ν$和弯曲刚度指数$η$的二维结晶膜,这些膜嵌入了大尺寸的空间$ d = 2 + d_c $,$ d_c \ d_c \ gg gg 1 $。我们证明,在异常胡克定律的政权中,绝对的泊松比方法是材料的独立价值,仅由空间维度$ d_c $:$ν= -1 +2/d_c -a/d_c -a/d_c^2 +\ d +\ d +d d_c^2 +\点$在其中$ a \ a \ a \ a \ aid a \ aid a \ aid a \ aid a \ lot of 1.76 \ pm pm 0.02 $。另外,我们找到了弯曲刚度指数的以下表达式:$η= 2/d_c+(73-68ζ(3))/(27 d_c^2)+\ dots $。这些结果无法通过自一致的筛选近似来捕获。
We compute the absolute Poisson's ratio $ν$ and the bending rigidity exponent $η$ of a free-standing two-dimensional crystalline membrane embedded into a space of large dimensionality $d = 2 + d_c$, $d_c \gg 1$. We demonstrate that, in the regime of anomalous Hooke's law, the absolute Poisson's ratio approaches material independent value determined solely by the spatial dimensionality $d_c$: $ν= -1 +2/d_c-a/d_c^2+\dots$ where $a\approx 1.76\pm 0.02$. Also, we find the following expression for the exponent of the bending rigidity: $η= 2/d_c+(73-68ζ(3))/(27 d_c^2)+\dots$. These results cannot be captured by self-consistent screening approximation.