论文标题
与MAV相关的快速基于边界的信息驱动的自主探索
Fast Frontier-based Information-driven Autonomous Exploration with an MAV
论文作者
论文摘要
通过未知环境的探索和无碰撞导航是自动机器人的基本任务。在本文中,提出了一种新型的微型航空车辆勘探策略(MAV)。勘探策略的目的是减少有关占用概率的地图熵,这反映在实用程序功能中以最大化。我们在基于OCTREE的占用映射方法,前沿提取和运动计划之间进行紧密整合,以实现快速有效的勘探性能,这是基于前沿和基于采样的探索方法之间的混合体。通过利用基于经典边界的探索中的计算昂贵边界聚类,可以利用基础OCTREE地图表示中的前沿体素的隐式分组。候选人的下一步视图是从地图边界采样的,并使用结合地图熵和旅行时间的实用程序函数进行评估,其中使用稀疏的光线播种对前者进行有效计算。这些优化以及对基于边界的方法的有针对性探索导致了快速且计算上有效的探索计划者。使用模拟和现实世界实验评估了所提出的方法,证明了与最先进的方法相比具有明显的优势。
Exploration and collision-free navigation through an unknown environment is a fundamental task for autonomous robots. In this paper, a novel exploration strategy for Micro Aerial Vehicles (MAVs) is presented. The goal of the exploration strategy is the reduction of map entropy regarding occupancy probabilities, which is reflected in a utility function to be maximised. We achieve fast and efficient exploration performance with tight integration between our octree-based occupancy mapping approach, frontier extraction, and motion planning-as a hybrid between frontier-based and sampling-based exploration methods. The computationally expensive frontier clustering employed in classic frontier-based exploration is avoided by exploiting the implicit grouping of frontier voxels in the underlying octree map representation. Candidate next-views are sampled from the map frontiers and are evaluated using a utility function combining map entropy and travel time, where the former is computed efficiently using sparse raycasting. These optimisations along with the targeted exploration of frontier-based methods result in a fast and computationally efficient exploration planner. The proposed method is evaluated using both simulated and real-world experiments, demonstrating clear advantages over state-of-the-art approaches.