论文标题
$ u(\ Mathfrak {sl} _n)$和steinberg经典类型的Quasi-Split对称对
Quasi-split symmetric pairs of $U(\mathfrak{sl}_n)$ and Steinberg varieties of classical type
论文作者
论文摘要
我们在Quasi-Split Symmetric对$ A_ {N-1} $中,为定点子词架提供了Lagrangian的构造,以及其基本形式。这是在Steinberg品种的Borel-Moore同源物的投影系统内获得的,该系统是$ n $ step justep jistropic Flag品种的限制。由构造产生的是基于能力形式的同源起源的基础,也是理性模块的几何实现。
We provide a Lagrangian construction for the fixed-point subalgebra, together with its idempotent form, in a quasi-split symmetric pair of type $A_{n-1}$. This is obtained inside the limit of a projective system of Borel-Moore homologies of the Steinberg varieties of $n$-step isotropic flag varieties. Arising from the construction are a basis of homological origin for the idempotent form and a geometric realization of rational modules.