论文标题
从1D中的有限体积元素方法开发的新的超对结构
New superconvergent structures developed from the finite volume element method in 1D
论文作者
论文摘要
新的超对结构由有限体积元素方法(FVEM)介绍,这使我们可以自由选择超对面点。建立了一般的正交条件和修改的M分解(MMD)技术,以证明新结构的超对范围特性。此外,表1中给出了正交条件与FVE方案的收敛性能之间的关系。给出数值结果以说明理论结果。
New superconvergent structures are introduced by the finite volume element method (FVEM), which allow us to choose the superconvergent points freely. The general orthogonal condition and the modified M-decomposition (MMD) technique are established to prove the superconvergence properties of the new structures. In addition, the relationships between the orthogonal condition and the convergence properties for the FVE schemes are carried out in Table 1. Numerical results are given to illustrate the theoretical results.