论文标题

本地应变工程和折叠的WS $ _2 $的可调光电特性

Tunable Optoelectronic Properties of WS$_2$ by Local Strain Engineering and Folding

论文作者

Khan, Ahmed Raza, Lu, Teng, Ma, Wendi, Lu, Yuerui, Liu, Yun

论文摘要

本地应变工程是一种令人兴奋的方法,可以调整材料的光电特性。二维(2D)材料(例如2D过渡金属二北元化化物(TMD))特别适合此目的,因为它们具有很高的柔韧性,并且可以在破裂前承受高变形。 2D TMD中的局部应变工程是通过紧张的皱纹实现的。据报道,由于带隙调制和漏斗效果,TMD厚层的皱纹显示出有趣的光致发光增强。但是,尚未研究超薄TMD中的皱纹,因为它们很容易掉落以在TMDC的这些超薄层中形成褶皱。在这里,我们使用新的制造技术在1-3L WS2中同时实现了皱纹和折叠。由于主要的层间筛选效果,发现折叠层和完美的包装层的表面电势的层依赖性降低。通过电流扫描观察到应变诱导的皱纹,观察到半导体连接特性中的应变依赖性调节。热离子建模表明,紧张的(1.6%)皱纹可以将Schottky屏障高度(SBH)降低20%。照明后,SBH由于照片生成的载体而大大减少。我们的结果提出了通过应变工程来控制原子薄WS2的光电特性的重要进展,并在光电子,量子光学和纳米光子设备制造中进行了应用。

Local strain engineering is an exciting approach to tune the optoelectronic properties of materials. Two dimensional (2D) materials such as 2D transition metal dichalcogenides (TMDs) are particularly well suited for this purpose because they have high flexibility and they can withstand high deformations before rupture. Local strain engineering in 2D TMDs is achieved via strained wrinkles. Wrinkles on thick layers of TMDs are reported to show interesting photoluminescence enhancement due to bandgap modulation and funneling effect. However, the wrinkles in ultrathin TMDs have not been investigated because they can easily fall down to form folds in these ultrathin layers of TMDCs. Here, we have achieved both wrinkles and folds simultaneously in 1-3L WS2 using a new fabrication technique. A layer dependent reduction in surface potential is found for both folded layers and perfect pack layers due to the dominant interlayer screening effect. Strain dependent modulation in semi conductive junction properties is observed for strain induced wrinkles through current scanning. Thermo-ionic modelling suggests that the strained (1.6%) wrinkles can lower the Schottky barrier height (SBH) by 20%. Upon illumination, SBH reduces significantly due to photo-generated carriers. Our results present an important advance towards controlling the optoelectronic properties of atomically thin WS2 via strain engineering, with applications in optoelectronics, quantum optics and nanophotonics device fabrication.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源