论文标题

消除学习排名的搜索意图偏见

Eliminating Search Intent Bias in Learning to Rank

论文作者

Sun, Yingcheng, Kolacinski, Richard, Loparo, Kenneth

论文摘要

事实证明,点击数据是提高搜索量质量的宝贵资源。搜索引擎可以轻松地收集点击数据,但是数据中引入的偏差可能会使很难有效地使用数据。为了衡量偏见的影响,文献中已经提出了许多点击模型。但是,没有一个模型可以解释以下观察结果,即具有不同搜索意图的用户(例如,信息,导航等)具有不同的点击行为。在本文中,我们研究用户搜索意图的差异如何影响点击活动,并确定用户搜索意图与文档相关性的相关性之间存在偏差。基于此观察结果,我们提出了一个搜索意图偏差假设,可以应用于大多数现有的点击模型,以提高其学习无偏见相关性的能力。实验结果表明,在采用搜索意图假设后,点击模型可以更好地解释用户点击并大大提高检索性能。

Click-through data has proven to be a valuable resource for improving search-ranking quality. Search engines can easily collect click data, but biases introduced in the data can make it difficult to use the data effectively. In order to measure the effects of biases, many click models have been proposed in the literature. However, none of the models can explain the observation that users with different search intent (e.g., informational, navigational, etc.) have different click behaviors. In this paper, we study how differences in user search intent can influence click activities and determined that there exists a bias between user search intent and the relevance of the document relevance. Based on this observation, we propose a search intent bias hypothesis that can be applied to most existing click models to improve their ability to learn unbiased relevance. Experimental results demonstrate that after adopting the search intent hypothesis, click models can better interpret user clicks and substantially improve retrieval performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源