论文标题

篡改交通信号的明显与影响

Noticeability Versus Impact in Traffic Signal Tampering

论文作者

Thodi, Bilal Thonnam, Mulumba, Timothy, Jabari, Saif Eddin

论文摘要

本文调查了城市交通网络对交通信号灯的网络攻击的脆弱性。我们将篡改流量信号建模为双目标优化问题,同时试图随着时间的推移减少网络中的车辆吞吐量(最大程度地影响影响),同时引入网络信号正时的最小变化(最小化值得注意)。我们将时空流量动力学表示为时间扩展图上的静态网络流问题。这使我们能够将(非凸)攻击问题减少到可拖动的形式,该形式可以使用用于解决线性网络编程问题的传统技术来解决。我们表明,随着时间的推移,信号时间中的次要但客观的调整会严重影响网络级别的交通状况。我们通过检查通过解决双向目标攻击问题获得的帕累托最佳前沿的凹陷来研究网络脆弱性。进行数值实验以说明可以从帕累托最佳边界提取的见解类型。例如,我们的实验表明,流量网络对篡改的脆弱性独立于需求水平。

This paper investigates the vulnerability of urban traffic networks to cyber-attacks on traffic lights. We model traffic signal tampering as a bi-objective optimization problem that simultaneously seeks to reduce vehicular throughput in the network over time (maximize impact) while introducing minimal changes to network signal timings (minimize noticeability). We represent the Spatio-temporal traffic dynamics as a static network flow problem on a time-expanded graph. This allows us to reduce the (non-convex) attack problem to a tractable form, which can be solved using traditional techniques used to solve linear network programming problems. We show that minor but objective adjustments in the signal timings over time can severely impact traffic conditions at the network level. We investigate network vulnerability by examining the concavity of the Pareto-optimal frontier obtained by solving the bi-objective attack problem. Numerical experiments are carried to illustrate the types of insights that can be extracted from the Pareto-optimal frontier. For instance, our experiments suggest that the vulnerability of a traffic network to signal tampering is independent of the demand levels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源