论文标题

关于$τ$的数量 - nakayama代数的模块

On the Number of $τ$-Tilting Modules over Nakayama Algebras

论文作者

Gao, Hanpeng, Schiffler, Ralf

论文摘要

让$λ^r_n $为$ \ mathbb {a} $线性定向颤动的路径代数,带有$ n $ vertices modulo $ r $ - $ r $ - $ \ \ \ \ \ \wideTildeλ^r_n $是周期性的$ wideted $ widete $ \ quiverbra a i^用$ n $顶点modulo,$ r $ $ th的功率。 Adachi给出了$τ$的$λ^r_n $的$τ$的重复关系。在本文中,我们表明,相同的复发关系也适用于$ \ \ \ \ \widetildeλ^r_n $的$τ$的数量。作为一个应用程序,我们为Asai在复发公式中提供了新的证明,以$λ^r_n $和$ \widetildeλ^r_n $的支持$τ$的数量。

Let $Λ^r_n$ be the path algebra of the linearly oriented quiver of type $\mathbb{A}$ with $n$ vertices modulo the $r$-th power of the radical, and let $\widetildeΛ^r_n$ be the path algebra of the cyclically oriented quiver of type $\widetilde{\mathbb{A}}$ with $n$ vertices modulo the $r$-th power of the radical. Adachi gave a recurrence relation for the number of $τ$-tilting modules over $Λ^r_n$. In this paper, we show that the same recurrence relation also holds for the number of $τ$-tilting modules over $\widetildeΛ^r_n$. As an application, we give a new proof for a result by Asai on recurrence formulae for the number of support $τ$-tilting modules over $Λ^r_n$ and $\widetildeΛ^r_n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源