论文标题
在分形方块的连接组件上
On the connected components of fractal cubes
论文作者
论文摘要
我们表明,分形的立方体$ f $ in $ \ mathbb r^3 $可能具有无数的套装$ q $连接的组件$k_α$都不包含在任何飞机上,而集合$ q $是一个完全不连续的超相似性自我相似的自我相似的子集$ c(\ nathbb r^3)
We show that a fractal cube $F$ in $\mathbb R^3$ may have an uncountable set $Q$ of connected components $K_α$ neither of which is contained in any plane, whereas the set $Q$ is a totally disconnected self-similar subset of the hyperspace $C(\mathbb R^3)$, isomorphic to a Cantor set.