论文标题
通过RESNEXT网络学习高光谱特征提取和分类
Learning Hyperspectral Feature Extraction and Classification with ResNeXt Network
论文作者
论文摘要
高光谱图像(HSI)分类是一项标准的遥感任务,在该任务中给出了每个图像像素的标签,指示地球表面上的物理地面覆盖。图像语义细分和对普通图像的深度学习方法的成就加速了有关高光谱图像分类的研究。此外,高光谱图像中光谱和空间提示的利用率已显示出高光谱图像分类的分类精度提高了。仅使用3D卷积神经网络(3D-CNN)从高光谱图像中提取空间和光谱线索会导致参数爆炸,从而爆炸。我们提出了称为混合SN的网络体系结构,该网络体系结构利用3D卷积在体系结构的早期层中对光谱空间信息进行建模,而在顶层的2D卷积主要涉及语义抽象。由于其性能和简单性,我们将架构限制为重新构图。我们的模型大大减少了参数的数量,并通过印度松树(IP)场景数据集,帕维亚大学场景(PU)数据集,萨利纳斯(SA)场景数据集和博茨瓦纳(BOTSWANA(BW)数据集)在印度松树(IP)场景数据集上实现了可比的分类性能。
The Hyperspectral image (HSI) classification is a standard remote sensing task, in which each image pixel is given a label indicating the physical land-cover on the earth's surface. The achievements of image semantic segmentation and deep learning approaches on ordinary images have accelerated the research on hyperspectral image classification. Moreover, the utilization of both the spectral and spatial cues in hyperspectral images has shown improved classification accuracy in hyperspectral image classification. The use of only 3D Convolutional Neural Networks (3D-CNN) to extract both spatial and spectral cues from Hyperspectral images results in an explosion of parameters hence high computational cost. We propose network architecture called the MixedSN that utilizes the 3D convolutions to modeling spectral-spatial information in the early layers of the architecture and the 2D convolutions at the top layers which majorly deal with semantic abstraction. We constrain our architecture to ResNeXt block because of their performance and simplicity. Our model drastically reduced the number of parameters and achieved comparable classification performance with state-of-the-art methods on Indian Pine (IP) scene dataset, Pavia University scene (PU) dataset, Salinas (SA) Scene dataset, and Botswana (BW) dataset.