论文标题

总和问题

The Sum Composition Problem

论文作者

Pennacchioni, Mario, Munarini, Emanuele, Mesiti, Marco

论文摘要

在本文中,我们研究了两个列表$ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $的“总成分问题”。首先,当存在一个订购的$ m $ - 分区$ [a_1,\ ldots,a_m] $ a $ a $ a $ a $ $ m $的$ b $的长度,每个零件$ a_k $的总和等于$ b $的相应零件等于,$ b $是$ a $的“总和”。然后,我们考虑以下两个问题:$ i)$“详尽的问题”,包括生成$ b $的所有分区的生成$ b $是$ a $ $ a $的sum组成,$ ii)$ $ $ $ b $ a $ a $ a $ a $ a $ sum a $ a $ a $ a $ a $ a $ a $的分区的存在。从总和组成的某些一般属性开始,我们提出了第一个算法解决详尽的问题,然后提出了第二种算法解决存在问题。我们还提供了正确性和实验分析的证明,以评估所提出的解决方案的质量以及与相关工作的比较。

In this paper, we study the "sum composition problem" between two lists $A$ and $B$ of positive integers. We start by saying that $B$ is "sum composition" of $A$ when there exists an ordered $m$-partition $[A_1,\ldots,A_m]$ of $A$ where $m$ is the length of $B$ and the sum of each part $A_k$ is equal to the corresponding part of $B$. Then, we consider the following two problems: $i)$ the "exhaustive problem", consisting in the generation of all partitions of $A$ for which $B$ is sum composition of $A$, and $ii)$ the "existential problem", consisting in the verification of the existence of a partition of $A$ for which $B$ is sum composition of $A$. Starting from some general properties of the sum compositions, we present a first algorithm solving the exhaustive problem and then a second algorithm solving the existential problem. We also provide proofs of correctness and experimental analysis for assessing the quality of the proposed solutions along with a comparison with related works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源