论文标题

智能ARXIV:学习用户主题偏好的每日论文

Intelligent Arxiv: Sort daily papers by learning users topics preference

论文作者

Alvarez, Ezequiel, Lamagna, Federico, Miquel, Cesar, Szewc, Manuel

论文摘要

当前的每日纸质发行越来越大,研究领域的多样性正在增长。这使科学家更难与当前的最新状态保持最新状态,并确定其感兴趣的相关工作。本文的目的是使用机器学习技术解决此问题。我们将一篇科学论文建模为将不同的科学知识从不同主题到新问题的组合结合在一起。鉴于此,我们在给定领域的论文语料库上实施了无监督的机器学习技术(LDA),以:i)在语料库中定义和提取基本主题; ii)获取语料库中每篇论文的主题权重矢量; iii)获取新论文的主题权重矢量。通过注册用户首选的论文,我们使用所选论文的向量的信息来构建权重矢量。因此,通过在每日ARXIV版本中在用户向量和每篇论文之间执行内部产品,我们可以根据用户对基础主题的偏好进行分类。 我们创建了网站iarxiv.org,在该算法学习每个用户偏爱的同时,用户可以在其中阅读分类的每日ARXIV版本(以及更多),每天都会产生更准确的分类。当前的IARXIV.org版本在ARXIV类别Astro-PH,GR-QC,HEP-PH和HEP-TH上运行,我们计划扩展到他人。我们提出了一些新的有用且相关的实现,以及LDA以外的新机器学习技术,以进一步提高该新工具的准确性。

Current daily paper releases are becoming increasingly large and areas of research are growing in diversity. This makes it harder for scientists to keep up to date with current state of the art and identify relevant work within their lines of interest. The goal of this article is to address this problem using Machine Learning techniques. We model a scientific paper to be built as a combination of different scientific knowledge from diverse topics into a new problem. In light of this, we implement the unsupervised Machine Learning technique of Latent Dirichlet Allocation (LDA) on the corpus of papers in a given field to: i) define and extract underlying topics in the corpus; ii) get the topics weight vector for each paper in the corpus; and iii) get the topics weight vector for new papers. By registering papers preferred by a user, we build a user vector of weights using the information of the vectors of the selected papers. Hence, by performing an inner product between the user vector and each paper in the daily Arxiv release, we can sort the papers according to the user preference on the underlying topics. We have created the website IArxiv.org where users can read sorted daily Arxiv releases (and more) while the algorithm learns each users preference, yielding a more accurate sorting every day. Current IArxiv.org version runs on Arxiv categories astro-ph, gr-qc, hep-ph and hep-th and we plan to extend to others. We propose several new useful and relevant implementations to be additionally developed as well as new Machine Learning techniques beyond LDA to further improve the accuracy of this new tool.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源