论文标题

一种基于局部的编码计算方法

A locality-based approach for coded computation

论文作者

Rudow, Michael, Rashmi, K. V., Guruswami, Venkatesan

论文摘要

现代分布式计算基础架构通常会受到不可利用或缓慢服务器等不可利用的困扰。这些不可利用性会对分布式基础架构中计算的尾巴潜伏期产生不利影响。复制计算的简单解决方案需要大量资源开销。编码计算已成为一种资源有效的替代方案,其中编码多个数据单位以创建奇偶校验单元,并将要计算的函数应用于不同服务器上的每个单元中的每个单元。解码器可以使用可用功能输出来解码不可用的功能。现有的编码计算方法仅对于线性函数(例如多线性)的简单变体才有资源有效,即使是低度多项式类别的类别都需要相同的乘法开销,就像复制相关的straggler耐受性。 在本文中,我们提出了一种新的方法,可以通过代码的局部镜头进行建模编码计算。我们介绍了基于适当定义的代码的局部性的广义局部概念,表示的计算局部性。我们表明,计算局部性等于所需的工人数量,用于编码计算,并利用了代码的经过良好研究的局部性到设计编码计算方案的结果。我们表明,可以使用局部恢复方案来得出有关多项式多项式的编码计算结果的最新结果。我们提出了对多元多项式的编码计算方案,这些计算方案可自适应地利用输入数据的局部性属性 - 现有框架下的不可接受的技术。这些方案所需的工人比现有的编码计算框架下的下限少,这表明服务器数量上的现有乘法开销对于非线性函数的编码计算并不是基础。

Modern distributed computation infrastructures are often plagued by unavailabilities such as failing or slow servers. These unavailabilities adversely affect the tail latency of computation in distributed infrastructures. The simple solution of replicating computation entails significant resource overhead. Coded computation has emerged as a resource-efficient alternative, wherein multiple units of data are encoded to create parity units and the function to be computed is applied to each of these units on distinct servers. A decoder can use the available function outputs to decode the unavailable ones. Existing coded computation approaches are resource efficient only for simple variants of linear functions such as multilinear, with even the class of low degree polynomials requiring the same multiplicative overhead as replication for practically relevant straggler tolerance. In this paper, we present a new approach to model coded computation via the lens of locality of codes. We introduce a generalized notion of locality, denoted computational locality, building upon the locality of an appropriately defined code. We show that computational locality is equivalent to the required number of workers for coded computation and leverage results from the well-studied locality of codes to design coded computation schemes. We show that recent results on coded computation of multivariate polynomials can be derived using local recovering schemes for Reed-Muller codes. We present coded computation schemes for multivariate polynomials that adaptively exploit locality properties of input data-- an inadmissible technique under existing frameworks. These schemes require fewer workers than the lower bound under existing coded computation frameworks, showing that the existing multiplicative overhead on the number of servers is not fundamental for coded computation of nonlinear functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源