论文标题

机器人空间挤出的可扩展和概率完整的计划

Scalable and Probabilistically Complete Planning for Robotic Spatial Extrusion

论文作者

Garrett, Caelan Reed, Huang, Yijiang, Lozano-Pérez, Tomás, Mueller, Caitlin Tobin

论文摘要

对可以制造3D结构的自动化系统的需求不断增加。机器人的空间挤出已成为传统基于层的3D打印的有吸引力的替代品,这是由于操纵器的灵活性打印了大型,定向依赖的结构。但是,现有的挤压计划算法需要大量的人类投入,不要扩展到大规模实例,并且缺乏理论保证。在这项工作中,我们介绍了机器人空间挤出计划的严格形式化,并提供了几种有效且概率完整的计划算法。关键的计划挑战是,在整个打印过程中,都满足了限制结构变形和几何约束的刚度约束,以确保机器人不会与结构相撞。我们表明,尽管这些约束经常相互冲突,但以僵化感知的启发式为指导的贪婪的向后空间搜索能够成功平衡这两个约束。我们从经验上比较了40多个模拟挤出问题的基准。最后,我们将方法应用于3个现实世界中的问题。

There is increasing demand for automated systems that can fabricate 3D structures. Robotic spatial extrusion has become an attractive alternative to traditional layer-based 3D printing due to a manipulator's flexibility to print large, directionally-dependent structures. However, existing extrusion planning algorithms require a substantial amount of human input, do not scale to large instances, and lack theoretical guarantees. In this work, we present a rigorous formalization of robotic spatial extrusion planning and provide several efficient and probabilistically complete planning algorithms. The key planning challenge is, throughout the printing process, satisfying both stiffness constraints that limit the deformation of the structure and geometric constraints that ensure the robot does not collide with the structure. We show that, although these constraints often conflict with each other, a greedy backward state-space search guided by a stiffness-aware heuristic is able to successfully balance both constraints. We empirically compare our methods on a benchmark of over 40 simulated extrusion problems. Finally, we apply our approach to 3 real-world extrusion problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源