论文标题

最佳的彼得 - 加盖尔金光谱近似方法,用于分数扩散,对流,反应方程

Optimal Petrov-Galerkin spectral approximation method for the fractional diffusion, advection, reaction equation on a bounded interval

论文作者

Zheng, Xiangcheng, Ervin, V. J., Wang, Hong

论文摘要

在本文中,我们研究了有界间隔的分数扩散,对流,反应方程的数值近似。最近,获得了该方程式的明确形式。使用溶液和雅各比多项式的边界行为的显式形式,提出了Petrov-Galerkin近似方案和分析。提出了支持理论结果的数值实验,并证明了近似方法的准确性和最佳收敛性。

In this paper we investigate the numerical approximation of the fractional diffusion, advection, reaction equation on a bounded interval. Recently the explicit form of the solution to this equation was obtained. Using the explicit form of the boundary behavior of the solution and Jacobi polynomials, a Petrov-Galerkin approximation scheme is proposed and analyzed. Numerical experiments are presented which support the theoretical results, and demonstrate the accuracy and optimal convergence of the approximation method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源