论文标题
最佳的彼得 - 加盖尔金光谱近似方法,用于分数扩散,对流,反应方程
Optimal Petrov-Galerkin spectral approximation method for the fractional diffusion, advection, reaction equation on a bounded interval
论文作者
论文摘要
在本文中,我们研究了有界间隔的分数扩散,对流,反应方程的数值近似。最近,获得了该方程式的明确形式。使用溶液和雅各比多项式的边界行为的显式形式,提出了Petrov-Galerkin近似方案和分析。提出了支持理论结果的数值实验,并证明了近似方法的准确性和最佳收敛性。
In this paper we investigate the numerical approximation of the fractional diffusion, advection, reaction equation on a bounded interval. Recently the explicit form of the solution to this equation was obtained. Using the explicit form of the boundary behavior of the solution and Jacobi polynomials, a Petrov-Galerkin approximation scheme is proposed and analyzed. Numerical experiments are presented which support the theoretical results, and demonstrate the accuracy and optimal convergence of the approximation method.